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Abstract: Natural frequencies for multilayer plates are calculated by mixed finite element method. The main object of this paper is to 

use the mixed model for multilayer plates, analyzing each layer as an isolated plate, where the continuity of displacements is achieved 
by Lagrange multipliers (representing static variables). This procedure allows us to work with any model for single plate (so as to 
ensure the proper behavior of each layer), and the complexity of the multilayer system is avoided by ensuring the condition of 
displacements by the Lagrange multipliers (static variables). The plate is discretized by finite element modeling based on a primary 
hybrid model, where the domain is divided by quadrilateral, both for the displacement field and static variables. This mixed element for 
plates was implemented and several examples of vibrations have been verified successfully by the results obtained by other methods in 
the literature. 
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1. Introduction 

Advanced composite materials are widely used in 

many specialties of engineering such as civil 

engineering, naval engineering and aerospace 

engineering due to its high strength to weight ratio, 

excellent corrosion resistance, good fatigue behavior 

and other superior properties compared to 

conventional materials. A detailed analysis of the 

advantages of these materials is given by Jones [1]. 

Among the different types of composite materials, 

laminates are the most popular due to their variety of 

structural applications in situations where high and 

flexural membrane strength is required. The 

composite laminates are basically plates formed of 

several layers which are perfectly linked together, 

presenting an anisotropic behavior. Each layer is 

comprised of fibers embedded in a matrix. These 

fibers confer higher mechanical properties to the 

laminate in the direction of the fiber, while the matrix 
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keeps them linked. The layers are placed one over 

other oriented according to the design requirements in 

order to optimize the use of material.  

The anisotropy of the composite materials leads to a 

complicated mechanical behavior which differs from 

the traditional materials. Its growing employment 

requires the development of efficient and accurate 

numerical methods to adequately predict its complex 

behavior. 

In this paper, a solution based on a layered model 

for the determination of modal characteristics from 

finite elements with mixed variables (kinematic and 

static) is proposed. The paper is organized as follows: 

Section 2 presents the mathematical formulation of the 

problem; Section 3 develops the finite element model, 

obtaining the governing equations by means of the 

Hamilton’s principle; Section 4 shows a methodology 

to solve the eigenproblem based on the inverse 

iterative vector method; Several examples are solved 

and exposed in Section 5; Finally, Section 6 presents 

the conclusions.  
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2. Problem Formulation 

A plate composed of “n” layers of height “h” is 

considered. And a system of local Cartesian 

coordinates (x, y, z) for each layer in the middle 

surface Ωi is defined. where x, y are the in plane 

coordinates and z is the normal coordinate. The upper 

face is located at z = -hi/2, and the bottom at z = +hi/2. 

Each layer is modeled independently, adopting the 

Reissner-Mindlin shear deformation theory (FSDT). 

Thus, the displacement field for a point (x, y, z) of a 

generic layer “i” is given by: 
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where, ui = [uoxi, uoyi]
T are displacements in the 

midplane, wi is the vertical displacement (assumed 

constant throughout the thickness considering the 

normal to midplane inextensible) and βi = [βxi, βyi]
T 

are normal cross rotations about axes y, x, 

respectively. 

The functional of the Reissner-Mindlin potential 

energy for a generic layer “i”, in function (ui, βi, wi) is 

expressed as: 
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where, the bilinear operators a(ui, ui) and a(βi, βi) 

represent the membranal and flexural deformation 

energy, respectively; while b(׏wi - βi, (׏wi - βi) is the 

shear energy deformation. In the analysis of free 

vibrations, the potential energy due to external work 

of the applied loads is zero. 

Meanwhile, the functional of the kinetic energy for 

a generic layer in terms of (ui, βi, wi) is expressed as: 
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where, c(ݑሶ ௜ ሶݑ  , ௜), ܿ(ߚሶ i,  ߚሶ i) and c( ݓሶ ௜ ሶݓ , ௜)represent 

the kinetic energy operators related to the plane, 

rotational and transverse inertia, respectively. The 

time derivative is indicated by a dot.  

The behavior of the layers that make up the system 

requires the continuity of displacements between 

adjacent layers (Fig. 1), for which the following 

kinematic constraints are imposed: 

(1) Displacements uoxi(x, y, hi/2) and uoyi(x, y, hi/2) 

in the interface i + 1, 
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should be equal to the displacements uoxi+1(x, y, -hi+1/2) 

and uoyi+1(x, y, -hi+1/2) in the interface i + 1, 
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so 
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(2) Vertical displacements wi for layer “i” should be 

the same that the vertical displacements wi+1 for layer i 

+ 1: 
 

 
Fig. 1  Displacements fields along height for the layer-wise 
model. 
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Thus, the multilayer system is obtained as a 

superposition of “n” simple plates, where the 

requirements of kinematic continuity are ensured 

mathematically from the inclusion of Lagrange 

multipliers λj = [λxj, λyj]
T and µj represents 

interlaminar stresses (surface forces) at the interface 

“j”. In this way, the functional of the total potential 

energy of the system is defined as: 
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While the functional of the total kinetic energy is 

demonstrated by: 
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The justification of the physical meaning of the 

Lagrange multipliers is obtained by Alliney and 

Carnicer [2]. 

3. Finite Elements Discretization 

The equations governing the problem are achieved 

by the Hamilton’s principle. 
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Introducing Eqs. (8) and (9) into Eq. (10), and 

taking the variation, the Euler-Lagrange expressions 

of the variational problem are obtained. 
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The set of equations obtained contains first 

derivatives of the dependent variables (ui, βi, wi), so 

that the shape functions thereof require C0 continuity, 

while for the dependent variables (λi, µi) supported 

continuity C-1 to not show their derivatives. Likewise, 

for simplicity, the same interpolation for all variables 

is adopted [3]. 
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where, NN is the number of nodes by element and Nq 

are the interpolation functions associated to node “q”. 

Replacing Eq. (16) into Eqs. (11)-(15), the finite 

element model is defined as follows: 
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For a system of three layers, the matrix compact 

representation is: 
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where, xi = [ui, βi, wi]
T are kinematic variables, λi = [λi, 

µi]
T are static variables, (Cii, Mii) are the stiffness and 

mass contributions each layer, respectively, and (Qii, 

Qij) are the Lagrange restriction matrix results. 

In free vibrations without damping analysis, the 

response of the plate is assumed periodic. 

i  

i

o w t
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 (23) 

where, xi
o is the independent of time amplitude and ω 

is the vibration angular frequency of the system. 

Replacing Eq. (23) into Eq. (22), the eingenploblem is 

given in Eq. (24). 
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The non-trivial solution requires that, 
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(25) 

after imposed the boundary conditions. 

4. Solving the Eigenproblem 

As is characteristic of mixed formulation, the 

stiffness matrix generated is not positive definite, and 

neither is the mass matrix. Furthermore, the number of 

unknowns increases rapidly as more layers are added, 

so that the determination of the eigenvalue problem is 

difficult. In this section, a simple methodology for 

solving the problem based on the inverse iteration 

method [4] is proposed. 

The procedure consists in initially establishing a 

test vector. Subsequently, the right hand of Eq. (24) is 

evaluated. Since eingenvectors can only be 

determined within a scale factor, choosing of ω2 does 

not affect the result which it is assumed ω2 = 1. Thus, 

the vector of equivalent load is obtained. 
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Since initial vector is arbitrarily set, generally 

represented in Eq. (24) equality is not satisfied (if is 

fulfilled, the test vector is an eingenvector), so the 

following system of equations must be solved. 
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From Eq. (27), it results: 
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Replacing the displacements on the remaining 

equations, the reduced matrix shown in Eq. (29) is 

obtained. 
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Thus, the kinematic unknowns are determined  

from the static unknowns, solving the “mixed 

problem”. 

Sufficient but not necessary condition to solve the 

Eq. (29) is: 

xi in n     
(30) 

where, ݊௫೔
 and ݊ఒ೔

 are the variable freedom degrees 

numbers [5]. 

The corresponding eigenvalue is computed using 

the Rayleigh quotient. 
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Being the mass sub-matrix Mii positive definite 

matrices associated with each of the layers, it is 

ensured that the divisor of Eq. (31) is not zero. 

Then, the resulting vector is normalized so that the 

new vector meets: 

T
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M 1
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iii k i ki
x x 
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(32) 

The normalization keeps vector elements with 

similar values in each iteration. If not done, the 

element values increase and decrease in each step, and 

can cause numerical problems.  

Checking of convergence is done by comparing two 

successive values of the eigenvalue.  
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2 2
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
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
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If the convergence criterion is not satisfied, a new 

iteration using as a test vector that is obtained by 

resolving Eq. (27) is started. The procedure is repeated 

until the convergence is set. As the number of 

iterations increases, eigenvalue and eigenvector tends 

to the lowest. 

Assessment modes and frequencies above can be 

accomplished by introducing a shifting in the scale of 

eigenvalues, or establishing an orthogonal test vector 

orthogonal to the found eigenvectors 

5. Numerical Results 

From the presented model, a code in the software 

GNU Octave for the numerical analysis of free 

undamped vibration composite plates is implemented. 

The effects on the frequency of the anisotropic of the 

material, the thickness-to-side ratio and the number of 

layers are studied. Moreover, variation across the 

thickness of the transverse stresses associated with the 

fundamental mode is presented. 

The plates have a rectangular geometry analyzed 

with dimensions a, b coincident with the x, y 

directions, respectively (Fig. 2). In all examples, they 

are modeled for symmetry reasons for the 

fundamental mode of vibration, only a quarter of the 

plate with a 6 × 6 uniform isoparametric quadrilateral 

elements with four-node linear interpolation mesh. 

The numerical evaluation of the integral is performed 

from the Gauss quadrature method, using 2 × 2 points 

membrane terms and flexure inertia while 1 × 1 points 

related to the shear. 
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Fig. 2  Plate and mesh representation. 
 

The boundary conditions used are: 
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The mechanical elastic properties are: 
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The effects on the natural frequencies of the number 

of layers as well as of the degree of orthotropy thereof 

are showed in Tables 1-4, where values in brackets 

indicate the number of layers of calculation. A square 

composite plate with a thickness/side ratio h/a = 0.20 

is considered. The E1/E2 ratio and the number of 

layers vary. The results are compared with the 

solution of 3D elasticity [6], noting an excellent 

correlation. It follows that as the number of layers (i.e., 

the overall degree of anisotropy of the plate) is 

increased, so does the fundamental frequency. It is 

further noted that as the layers of calculation increases, 

the presented solution is refined. By enhancing the 

thickness discretization more realistically, shearing 

energy is computed assuming constant in each layer. 

The effect of thickness/side ratio at the fundamental 

frequency is studied in Table 5. A laminated square 

plate (0°/90°)s with a E1/E2 = 40 ratio is analyzed. 

Each individual layer is discretized into three layers of 

calculation. The results are compared with those of 

other authors. 

Table 1  Effect of the degree of orthotropy of each layer on 
the fundamental frequency of a simply supported squared 
plate with h/a = 0.20. Stacking sequence: (0°/90°). 

 
E1/E2 ratio 

3 10 20 30 40 

Present (2) 6.3350 7.0827 7.8000 8.3385 8.7610 

Present (4) 6.2810 7.0322 6.7642 8.3092 8.7362 

Present (6) 6.2672 7.0085 7.7197 8.2425 8.6482 

Present (8) 6.2622 6.9990 7.7015 8.2150 8.6120 

Present (10) 6.2597 6.9945 7.6925 8.2015 8.5940 

Noor [6] 6.2577 6.9845 7.6745 8.1762 8.5625 
 

Table 2  Effect of the degree of orthotropy of each layer on 
the fundamental frequency of a simply supported squared 
plate with h/a = 0.20. Stacking sequence: (0°/90°)2. 

 
E1/E2 ratio 

3 10 20 30 40 

Present (4) 6.5562 8.1948 9.5107 10.313 10.862 

Present (8) 6.5340 8.1382 9.4080 10.175 10.697 

Present (12) 6.5297 8.1272 9.3872 10.147 10.662 

Noor [6] 6.5455 8.1445 9.4055 10.165 10.680 
 

Table 3  Effect of the degree of orthotropy of each layer on 
the fundamental frequency of a simply supported squared 
plate with h/a = 0.20. Stacking sequence: (0°/90°)3. 

 
E1/E2 ratio 

3 10 20 30 40 

Present (6) 6.6002 8.4205 9.8697 10.746 11.338 

Present (12) 6.5895 8.3918 9.8157 10.671 11.249 

Noor [6] 6.6100 8.4142 9.8397 10.696 11.273 
 

Table 4  Effect of the degree of orthotropy of each layer on 
the fundamental frequency of a simply supported squared 
plate with h/a = 0.20. Stacking sequence: (0°/90°)5. 

 
E1/E2 ratio 

3 10 20 30 40 

Present (10) 6.6230 8.5400 10.065 10.986 11.610 

Noor [6] 6.6457 8.5625 10.084 11.003 11.624 
 

Table 5  Fundamental frequency for a simply supported 
squared plate with various h/a ratios (E1/E2 = 40). 

h/a ratio Desai et al. [7] Matsunaga [8] Present 

0.50 5.315 5.3211 5.3462 

0.20 10.682 10.6876 10.730 

0.10 15.069 15.0721 15.160 

0.05 17.636 17.6369 17.770 

0.04 18.067 18.0557 18.198 

0.02 18.670 18.6702 18.826 

0.01 18.835 18.8352 18.995 
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Regarding the performance of the methodology of 

solving the problem of eigenvalues, the results were 

obtained with a relative error less than 1e-6 in a 

number of iterations alternating between 4 and 5, 

depending on the cases. Examples requiring more 

iteration cycle were related to a high E1/E2 ratio. 

Finally,  the  behavior  of  the  static variables is 

analyzed. Considered for h/a = 0.30 ratio , two square 

plates with a sequence of laminated (0°/90°) and 

(0°/90°)2, and for h/a = 0.20 ratio, a square plate  
 

 
Fig. 3  Variation across the thickness of the normalized 

transverse shear stress ഥ࣌࢞ࢠሺ૙, ࢈ ૛⁄ , തሻࢠ  for a simply 
supported squared plate with a stacking sequence (0º/90º). 
 

 
Fig. 4  Distribution along the thickness of the normalized 

transverse normal stress ഥ࣌ࢠࢠሺࢇ ૛⁄ , ࢈ ૛⁄ , തሻࢠ  for a simply 
supported squared plate with a stacking sequence (0º/90º). 

laminated with a scheme (0°/90°)5. Variation along 

the thickness of the transversal stresses manners 

computed through Lagrangian multipliers is shown in 

Figs. 3-8. Obtained values are divided by their 

absolute maximum value. In all cases, the results 

obtained are similar to those found by the solution of 

the elasticity of Noor [6], the analytical solution of the 

global higher-order plate theory of Matsunaga [8], and 

tridimensional mixed finite element solution of Desai 

et al. [8]. 
 

 
Fig. 5  Variation across the thickness of the normalized 

transverse shear stress ഥ࣌࢞ࢠሺ૙, ࢈ ૛⁄ , തሻࢠ  for a simply 
supported squared plate with a stacking sequence (0º/90º)2. 
 

 
Fig. 6  Variation across the thickness of the normalized 

transverse shear stress ഥ࣌ࢠࢠሺࢇ/૛, ࢈ ૛⁄ , തሻࢠ  for a simply 
supported squared plate with a stacking sequence (0º/90º)2. 
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Fig. 7  Variation across the thickness of the normalized 

transverse shear stress ഥ࣌࢞ࢠሺ૙, ࢈ ૛⁄ , തሻࢠ  for a simply 
supported squared plate with a stacking sequence (0º/90º)5. 
 

 
Fig. 8  Variation across the thickness of the normalized 

transverse shear stress ഥ࣌ࢠࢠሺࢇ/૛, ࢈ ૛⁄ , തሻࢠ  for a simply 
supported squared plate with a stacking sequence (0º/90º)5. 

6. Conclusions 

It presents a mixed finite element model to 

determine the modal characteristics of multilayered 

plates. The continuity of displacements as well as 

transverse stresses is assured across the thickness of 

the plate from the inclusion of Lagrange multipliers. 

The mixed formulation allows direct evaluation of 

transverse stresses without integrating the equilibrium 

equations involving loss of accuracy, resulting in a 

point of great interest in studying the behavior of 

composite laminates. A methodology based on the 

inverse iteration method to solve the eigenproblem 

was implemented, obtaining good results in a few 

iterations. The accuracy of the model is demonstrated 

along of several problems where the found results are 

similar to those available in the literature. 
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